
Good practices for R&D projects producing FLOSS

(Request for comments)

Jesus M. Gonzalez-Barahona
GSyC/LibreSoft (URJC), http://libresoft.es

v0.2, October 2010 (early draft)

Abstract

Many R&D projects are producing FLOSS (free, libre, open source software) in different
domains. This document provides details on the practices that could be considered as “good”
from the point of view of maximizing the impact of using FLOSS as a distribution model. It
is targeted mainly at projects funded by the European Commission, but could be of interest
or others as well.

Copyright 2010 Jesus M. Gonzalez-Barahona. Some rights reserved.
This document is distributed under the Creative Commons Attribution-ShareAlike 3.0 licence,

available in http://creativecommons.org/licenses/by-sa/3.0

1

http://libresoft.es
http://creativecommons.org/licenses/by-sa/3.0


Contents

1 Introduction 3

2 What is FLOSS? 3

3 Issues to deal with from the start 4
3.1 Determining FLOSS outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Policies for licensing and transfer of copyright . . . . . . . . . . . . . . . . . . . . 5
3.3 Previous assets and licensing status . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 External dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Development model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 Relationship with external parties (users, contributors) . . . . . . . . . . . . . . . 8
3.7 Envisioned sustainability model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Development issues 9
4.1 Infrastructure for supporting development . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Development tools and practices . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Release early, release often . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Integration with established communities . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Openness of procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Distribution and dissemination 12
5.1 Software distribution policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Contributions to external projects . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Dissemination strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Conferences and meetings suitable for dissemination . . . . . . . . . . . . . . . . 14
5.5 Other communication channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 Demonstration site and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Community, sustainability 15
6.1 Growing a community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Passing the token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Other outcomes of the project 16
7.1 Licenses for public documents and media . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Formats for documents and media . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.3 Software used in dissemination and development activities . . . . . . . . . . . . . 17

8 Other issues 17

9 Further reading 17

2



1 Introduction

Deciding that an R&D project will produce some FLOSS (free, libre, open source software)
product can lead to many beneficial outcomes. However, this decision alone does not necessarily
produce them: it is important to take some actions to maximize the benefits, and to avoid the
potential problems that could arise. This document provides some guidelines that could help to
determine and understand those actions.

This document is not intended to explain the benefits or problems of deciding to go the
FLOSS way. It is assumed that the decision of producing FLOSS has already been taken.

Although the main target of this document is R&D projects funded by the European Com-
mission (EC) under its Framework Programme (FP), it could be of use probably for other R&D
projects. In the case of FP EC funded projects, projects are usually carried on by a set of
partners (the project consortium) who sign a Consortium Agreement (CA). The EC does not
require (and usually does not want) transfer of copyright of the results of the project. On the
contrary, they expect the project consortium to detail, in the CA, the intellectual and industrial
property provisions they may agree. In this kind of projects partners can also publish or market
the results of the project, or integrate them with other products, with the only constraints of the
consortium agreement. The project consortium is bound to the EC by the project Description
of Work (DoW), which states the project goals, its work plan and scheduling, the resources com-
mitted to perform it, the dissemination and sustainability plans for the results of the project,
and some other details about it.

This document is a living one, expected to evolve as contributions are received. Should you
be interested in contributing fixes, changes, new topics or any other kind of improvement, please
contact the author at jgb @ gsyc.es.

2 What is FLOSS?

In this document, the term “FLOSS” (free, libre, open source software) will be used to refer both
to “free software”, as defined by the Free Software Definition by the Free Software Foundation,
and to “open source software”, as defined by the “Open Source Definition” by the Open Source
Initiative. The term “libre software” is in some cases used as such (in English, although it is an
Spanish and French word) to avoid the ambiguity of “free”, which can refer both to freedom or
to cost (gratis).

Different actors may prefer any of these terms, and there are even whole communities that
identify themselves as a part of the “free software movement” or “open source community”.
In fact, for some people, the term used is quite important. However, the already mentioned
definitions of “free software” and “open source software” have very similar effects: almost all the
software that is considered “free software” by the Free Software Foundation is also considered
“open source software” by the Open Source Initiative, and vice-versa. Some small fraction is
not, but in most practical cases that fraction is so marginal that can be neglected.

FLOSS is defined by the actions that somebody who receives a piece of software can perform
on it. But the current legal framework forbids almost all actions except that the copyright holder
gives explicit permission for them. Therefore, the FLOSS status of a program is determined by
the permissions that the copyright holder grants, which are usually encoded in the distribution
license. FLOSS definitions mainly determine which licenses can be considered to grant the actions
that they consider minimum in the case of free software or open source software.

As a conclusion, determining that some software is FLOSS software is not something arbitrary.
To be considered as such by the wide FLOSS community, the licensing and distribution schemas
used have to be recognized as such by the relevant bodies (the Free Software Foundation and

3



the Open Source Initiative). To avoid confusion and criticism (and even some laughs) by the
FLOSS community, a project shouldn’t state that it is delivering “free software”, “open source
software” or “libre software” if that is not clearly the case.

Recommendation:
Ensure that all partners understand what FLOSS means in the context of your project. It is

important as well that they realize which of the software they will be using or producing in the
context of the project is FLOSS.

Recommendation:
When the DoW uses the terms “FLOSS”, “free software”, “open source software”, “libre

software” or any other related, ensure that they are properly defined, to avoid errors and miss-
intepretetations.

3 Issues to deal with from the start

Even before a single line of code has been written, the project willing to produce some FLOSS
should take some actions and decisions. It is important that they are considered as soon as
possible in the project life, since many of them could shape the future of the FLOSS development
process, or of its dissemination and impact. Early decisions may also help to avoid conflicts that
could arise later, either between partners in the project, or with third parties, if no clear rules
are established from the beginning.

However, some of them are moving targets, which could be reconsidered or redirected later,
as the project evolves.

3.1 Determining FLOSS outcomes

Since the proposal stage, it is important to clearly determine the software components that are
to be released as FLOSS. They can be, for example:

• Some components produced (or released) by the project. In this case, they should be
specified as much as possible.

• All components produced by the project. This does not necessarily include previous work
contributed by the partners or third party components.

• All components released by the project. This does not necessarily include third parties
components, but includes all components released in the context of the project, including
those that are derived works of prior works of the partners.

• The whole system used to deploy the demonstrations and test-beds carried on by the
project. This includes all the components used to test the outcomes, including prior work
components and derived works from them, and those obtained from third parties.

It is also important to determine how the FLOSS components are to be distributed. In
the case of complete systems composed by FLOSS components, either the whole system can be
distributed, or only the components separately.

Recommendation:
The Description of Work should specify clearly the outcomes of the project that are to be

distributed as FLOSS.

4



3.2 Policies for licensing and transfer of copyright

Licensing is probably one of the most important topics that the project consortium should dealt
with early. There are at least two reasons:

• Administrative. The intellectual and industrial policy of the consortium should be specified
in the Consortium Agreement. This policy should at least allow for the release of the
software produced by the project as FLOSS, should clarify the relationship with any other
prior-art software that the partners may contribute to the project, and if possible, should
state some common rules about copyright attribution and FLOSS licensing.

• Impact of the selected licenses. There are many FLOSS licenses, and each one could have
a different impact on the relationship between partners, the business models for derived
works, the collaboration with other FLOSS and/or R&D projects, the integration with
other FLOSS and non-FLOSS components, and other issues.

It is important that the project selects the license or licenses to release the software having
into account all these impacts. If the project consortium lacks the expertise to evaluate the
foreseeable impact of FLOSS licenses, it would be convenient that they get some external advising
on the matter. Given the complexity and novelty of software licensing in general and FLOSS in
particular, and the different interactions with company intellectual propriety policies, industrial
propriety, and others, this advising should be provided by an expert on FLOSS licensing.

Despite the convenience of this expert advising, some general rules that are usually considered
as good practices are provided below:

• Ensure that the license is a recognized FLOSS license.

• Avoid license proliferation, at least if it is not rather well justified and understood. In other
words, avoid producing a new license.

• Keep licensing as simple as possible. If possible, release everything under the same license.

• Consider the licenses of the FLOSS components that are planned to be integrated, so that
they are compatible with the selected license.

• Consider dual licensing if needed for integrating and releasing FLOSS components with
incompatible licenses.

• Ensure that the license selected is compatible with the envisioned business models, if any.

• If you plan to work with an already existing FLOSS community, discuss the license with
them, or at least understand their licensing policies and views, to avoid future problems.

Remember that licenses used will shape future distribution of the produced software, and
contributions to it. It has to be as easy to understand as possible for anyone considering using
or creating derivative works of the programs. Therefore, using well known licenses, whenever
possible, is a good choice: most potential users will be familiar at least with its main provisions.

It is also important to ensure that all consortium members understand the implications of the
licensing schema chosen, and that they have checked that it is compatible with the intellectual
propriety policies of their organization. In fact, in some cases, maybe some partners have policies
that force them to use (or avoid) certain licenses. In some cases, this could lead to different
partners distributing their components under different licenses. This should be avoided as much

5



as possible, since it will make the licensing schema much more complex. But if the situation is
unavoidable, at least license compatibility should be carefully checked.

Recommendation:
Avoid considering the decision on the FLOSS licensing policy as a marginal matter that can

be dealt with at release time. Since the proposal is started to be shaped, it is important to
consider the effect of the FLOSS policy on other areas of the project, such as development,
dissemination, sustainability, and collaboration with other projects and communities. In cases
where the project is producing outcomes expected to be the basis of a commercial service or
product, the impact of the licenses on the business model should be carefully studied,

Recommendation:
The licenses to be used to distribute the FLOSS outcomes of the project should be specified

in the Description of Work.
Recommendation:
Decide early in the life of the project who is going to be the copyright holder of the produced

software. It can be the partner producing the software, the consortium, or any other third party
(such as a FLOSS foundation, to which the copyright could be transfered). If possible, specify
this in the Description of Work. Be sure of getting the needed legal advice about who can be
the copyright owner given the structure of the involved institutions.

3.3 Previous assets and licensing status

In most cases, partners contribute with previous work, not covered by the provisions applied to
software produced in the project. These cases can and should be clarified in the Consortium
Agreement as much as possible. In addition, the licensing schemas for that previous work should
be clarified, since it can have a great impact on the licensing choices for the results of the project.
For example, if the goal is to produce a completely FLOSS system, having some partner with
prior work, needed for the system, but which is only available through a non-FLOSS licences
would render this goal impossible. That would be the case even if that work is available for
gratis.

When those cases arise, it is important to remember that if the involved partners have total
ownership over the code, they could relicense a version (or a derived work) under a FLOSS
license. They can do this even while maintaining other versions of the same component under a
non-FLOSS license.

In addition, license compatibility should also checked. Even if all the previous work is FLOSS,
it could be the case that the result of integrating it cannot be distributed. This usually happens
when the results are derived works of several components, and there is no way of simultaneously
satisfying the conditions of the FLOSS licenses for each of them.

Recommendation:
As soon as it is possible, the partners should produce a list with all the prior work components

they intend to use, with the licensing status. That listing should specify at least the licenses
under which those components are distributed, and include links to where the software can be
downloaded, so that other partners can check. Once the list is complete, the partners should
check whether such list is compatible with their goals, in terms of FLOSS licenses for specific
results. In case the check is negative, corrective actions should be taken. most of this work
should be done when the project is still in the proposal stage, since some problems (such a
partner refusing to distribute a key component under a FLOSS license) can be unsolvable at
later stages.

Recommendation:

6



To include in the Description of Work the listing of prior work to be reused, its licensing status,
and the corrective measures to be taken in case license compatibility arises at later stages. Since
the Description of Work is binding for all the partners, this will help to avoid difficult situations
in the future, if some partner failed to disclose the status of some prior work.

3.4 External dependencies

Usually, projects use components from third parties as a part of the outcomes, or of the plat-
forms needed to run or test the outcomes. The dependency on a given component can be clear
and explicit, or in some cases be hidden under a complex chain of dependencies from other
components.

The licensing schemas of all those components coming from sources outside the consortium
could interfere with the FLOSS policy of the project. Therefore, it is important to carefully
check the licensing status of all external components, to decide whether their use (or, if needed,
creation of a derived work) will allow to distribute the final outcomes under the FLOSS licenses
decided.

Recommendation:
To perform, as soon as possible, a dependency analysis to determine all third party com-

ponents needed for the outcomes of the project. Analyze the licensing status of all of them,
checking for FLOSS status, license compatibility, and its impact on the FLOSS policy of the
project. Whenever possible, this should be done as soon as possible, even in the proposal stage.
If possible, clarify all these matters before the first version of the Description of Work is complete,
and include in it the resulting list and status of third party components.

3.5 Development model

FLOSS can be developed in many ways. Traditional, in-house methods can be used, but other,
more community-based practices can be worth exploring. Since partners in the consortium are
expected to collaborate, and in some cases to do some joint development, community-based
practices can be specially interesting.

Using open, community-based development practices may have several advantages and little
risk for projects deciding to produce FLOSS components. These practices usually mean to
develop as most FLOSS communities do, with most (if not all) technical decisions taken after
public discussions, with living public repositories for source code and issue tracking and planing,
open communication channels between developers, and open interaction with users.

For an R&D project which has decided to produce FLOSS, the some of the specific advantages
of this model are:

• It is easier to involve external contributors, since they have access to all the relevant
information. This can have a huge impact in the sustainability of the project after funding
is finished.

• Third parties can provide relevant feedback, helping in the testing and validation phases.

• This practices match well the traditional uses of the scientific community, based on the
open discussion of all the aspects related to the research work.

• There is an extra of visibility, since people interested in the technology will probably look
at the project for information. With time, it can become the most visible point for that
information.

7



• Confidence on the results of the project can be much higher if there is early access to all
the information related to it.

Maybe the worst risk to be faced is that external experts could examine early the results
of the project, or the methods to reach them, and criticize them. But even in this case, that
criticism could be also valuable feedback, which could help the project to re-focus or consider
issues that had not been detected. In addition, the pressure that can mean for project partner
to be subject to public scrutiny may also help to achieve excellence, and will certainly help in
the accountability of the project.

Recommendation:
Include in the Description of Work the development practices to be followed for FLOSS

components. Consider being as open and as much “community-based” as possible, as a way
of improving the results and impacts of the project. Have as a model the working practices of
community-based FLOSS projects.

3.6 Relationship with external parties (users, contributors)

When FLOSS is produced, the usual barriers between developers and “others”blurs. External
contributors can provide valuable patches fixing errors or providing new functionality. Many users
are willing to contribute with bug reports, feature requests or casual support to other users.
Any of them can contribute with wise ideas in many technical and non-technical discussions.
Therefore, taking advantage of the actions of all of these actors should be important for the
project. In addition, in many cases the creation of a community around the FLOSS components
produced is an explicit goal of the project.

But maintaining good relationships with those external actors is something that cannot be
taken for granted. They can feel excluded, their contributions not being taken into account, if
they cannot even find ways of contributing or getting involved in the project.

Therefore, an specific policy and means for maintaining a healthy relationship with external
actors has to be put in place.

Recommendation:
Include in the Description of Work a carefully designed policy for managing the relationship

with external actors which could contribute to the project.

3.7 Envisioned sustainability model

Once the project ends, the FLOSS components remain available, as long as they can be down-
loaded from somewhere in the Internet. However, this is not enough for those components to
survive: they need to adapt to new circumstances, and to evolve and improve. Even the most
interesting and functional components become irrelevant if they are not properly maintained.

Acknowledging this, and also having into account that the R&D project is usually a first step
towards the marketing of some technology, product or service, most projects look for ways of
ensuring the maintenance and evolution of the components once the funding is over. However,
not in all cases this issue is addressed with the detail it deserves. For instance, merely stating that
the users and developers community will take charge of maintaining the software after the end
of the funded project is not enough: the community has to be created, nurtured and maintained.

In addition, not always the creation of a community is easy or even feasible. If the potential
users of the components are a small population, or if the component is not mature enough to
attract real users, or if there is not enough economic incentives for companies to join, or if nobody
is contributing with the resources to bootstrap a community, it will not happen.

8



Therefore, it is important to specify which sustainability model is to be used after the funded
project ends. If it is community-based, how that community will be created and maintained
should be detailed, including which resources will be allocated for that.

Of curse, some of these issues are difficult to foresee when the project is planed. For example,
in many cases it is difficult to estimate how many users or external contributors could be attracted
to the project, which means that plans for raising and maintaining the community (or in general,
the sustainability after the funded period) will be mainly guidelines, that should be adapted
during the life of the project.

Recommendation:
The Description of Work should include a clear plan for sustainability after the end of the

funded period. If it is based in the maintenance by a community, the work plan should specify
how this community is to be raised and maintained, and the resources allocated to that end. In
addition, it should be explained how this community is expected to find and organize the resources
needed to maintain the component after the end of the funded period. If some other sustainability
model is to be explored (public or private sponsorship, business agreements, business models,
etc.) they should also be explained to some extent.

4 Development issues

If the project has decided to produce FLOSS components, there are some issues related to
the development process that should be taken into account. In short, most of them relate to
how efficiently they can get advantage of the practices and resources that FLOSS development
communities usually employ. In addition, the project should also do things in the way that other
FLOSS developers expect, if it expects to attract their attention, with the idea of forming a
community.

4.1 Infrastructure for supporting development

Over the years, FLOSS projects have developed an elaborate set of systems and practices for
supporting the distributed development models they usually employ. Most of them could also
be suitable for the development carried out by R&D projects (usually carried out by developers
from different partners, geographically dispersed), and even for other project coordination tasks.

The basic facility used by FLOSS developers is the forge. A forge is a site providing a
set of facilities to support software development, which are managed (to a certain extent) in
coordination. Some of the services usually provided by a forge are (the list is not exhaustive):

• Source code management system. They are used to maintain all revisions of the source
code. There are two main types of them: the centralized ones (CVS, Subversion) and the
newer, distributed ones (git, Bazaar or Mercurial).

• Release repositories. Used to maintain releases of the code or documentation produced by
the project, normally ready for users.

• Issue tracking systems. Used to keep track of bug reports, feature requests, and other kinds
of tickets.

• Mailing lists. Used for asynchronous communication between members of the development
and users community.

• Forums and blogs. Used for public information of news, events and comments related to
the project.

9



• Wikies and content management systems. Used to maintain documentation, or other in-
formation about the project.

In addition to some proprietary software, there are several FLOSS products providing all
or a part of the forge services. The most common are GForge and its derivatives (including
Fusionforge), Trac, RedMine, Plone Forge, Gitorious. Those can be deployed by a project to
provide the forge services they may need.

However, a project does not need to deploy its own forge. Usually, it is more convenient to
use the services provided by a third party. In addition to companies providing forge services for
a cost, there are several forges that offer their services gratis to FLOSS projects:

• Public forges, such as SourceForge, Google Code, Savannah-nonGNU, Berlios, Github or
Gitorious. Any project developing FLOSS can be hosted in them. Usually, all the infor-
mation maintained in it (except for privacy-related information) will be public.

• Project forges, such as Savannah-GNU, Alioth, or the Apache, GNOME, Mozilla or KDE
development sites. They are maintained by a FLOSS project for hosting their own devel-
opment.

• Community forges, such as OW2 or Morfeo. They are maintained by FLOSS development
communities, in which companies have a prominent role, for the software developed by
them.

• Specialized forges, such as OSOR (for European public administrations).

All this wealth of facilities is at the disposal of disposal of R&D projects producing FLOSS.
They should explore how better benefit from them, and to which extent use them to come closer
to their goals. This could include the raising of a community (attracting external contributors),
the dissemination of the produced software, etc.

Recommendation:
Projects should describe in the Description of Work whether they are planning to use the

services of a forge, and if so, how. It is important to notice that they can use these services not
only for software development, but also for project coordination and production of deliverables.
For instance, most projects need mailing lists for coordination: those can be easily deployed
using forge services. Repositories for documents, and source code management systems may also
be of help in the elaboration of materials, including written deliverables.

Recommendation:
Projects should decide early in the life of the project, and certainly before any development

starts, which specific forge to use (or deploy, if they want to have their own). They should also
detail their policy with respect to the use of the forge: which services they are going to use, which
kind of information should go trough them, mechanisms used for getting external feedback and
communication with third parties, etc. That forge policy should be specified as a part of the
early design and detailed planning deliverables to be produced at the starting of the project.

4.2 Development tools and practices

In addition to using the services provided by a forge, the developers in the project should be
familiar with the common development tools in the relevant FLOSS areas. Each kind of FLOSS
development tends to have a certain set of tools and procedures that are “expected” by other
developers: not using them means erecting barriers to receiving contributions, and making use
more difficult. However, those tools and practices may change a lot from area to area. They

10



range from the existence of certain files in the source code (such as the COPYING, README
or CHANGELOG files) to the use of certain configuration and building tools (such as Make-
file, autotools, Ant or Maven), or even certain Integrated Development Environments (such as
Eclipse).

It is important that the developers in the project know about these practices and tools, get
familiar with them (if they were not), and honor the common uses of the FLOSS area in which
they are developing, to a reasonable extent, if they do not want to be perceived as aliens by
other developers in that area.

Recommendation:
Projects should ensure that they include at least some expert FLOSS developers in the area

they are working. They should introduce the rest of the developers to the common uses in that
area, and help them to adapt those. It is important that they explain how other developers
expect the source code and related information to be. If needed, they should produce some
guidelines about those matters. Except when other reasons may conflict with this, it would be
important that developers in the project use the same tools that other FLOSS developers in that
area. That would help a lot when receiving external contributions, or when sharing code with
them.

4.3 Release early, release often

One of the main recommendations of Eric Raymond in its seminal document about FLOSS
development, “The Cathedral and the Bazaar” was to release early and to release often. This
is of course still valid, and should be considered of extreme importance by research projects. In
addition to the reasons that Eric Raymond exposes, there are some others, maybe specific to
research projects:

• The live of the project is relatively short, usually from two to three years, in some cases
four years. That means that if the project waits to release until it has a mature product,
or even an usable product, probably the project will end before anyone external to the
project has had the time to know enough about it to contribute back. This will render
many of the dissemination efforts of the project irrelevant, specially if they are related to
the raising of a community.

• Technology evolves fast. Therefore, the window for showing results that are ahead of the
state of the art is small. The sooner the project releases, the most likely that the window
is still open.

• Releasing early and often means that there are no hidden agendas: everything happens
in the open. This will be perceived by other FLOSS developers in the area as a sign of
maturity and trustability. In addition, seeing frequent releases tends to be a good indicator
of a healthy development effort.

In fact, probably there are little reasons not to have a policy of “continuous release”, which
means that the development is carried out directly in the source code management system (SCM).
In this case, usually a “stable” branch is defined in the SCM, to which external developers
are pointed. That branch is maintained with special care, trying to have it always ready, at
least for testing. Of course, in addition, some regular releases could be done in cycles, freezing
functionality for a while, and after performing the convenient testing.

Recommendation:
Define a release policy in the Description of Work. If possible, use development methodologies

(such as spiral development) compatible with continuous or semi-continuous release. Start the

11



releasing of source code as soon as possible: from the very beginning in the case of code in the
SCM, and as soon as there is a semi-usable (even with very minimal functionality) version.

4.4 Integration with established communities

One of the most effective ways of ensuring the sustainability of the FLOSS components after the
end of the funded period is by integrating it in an established community. This will help to find
other interested developers in the components, as well as to gain visibility of them.

In this respect, there are at least two chances:

• Approach a domain-specific FLOSS community to which the project could contribute with
components important to them. For instance, if the project is producing elements miss-
ing in (and interesting for) KDE, GNOME, Mozilla, Eclipse, Apache, Debian, etc., those
communities can be approached with the intention of joining them. Usually, they have
procedures for accepting external contributions such as those produced by the project, or
even for hosting the development (such as the Apache Incubator).

• Approach a company-based community, such as OW2 or Morfeo, which could also be
interested in the outcomes of the project.

Recommendation:
Consider as soon as possible, even at the proposal stage, to identify communities that could

be interested in the outcomes of the project. In some cases, they could be approached with the
intention of adding them to the partnership of the project. In others, they could be approached
with the intention to join them. In any case, that should be specified as a target in the Description
of Work, with the actions and resources needed to reach that end. In addition, it would be
convenient to specify alternative plans, because no matter how much effort is devoted to involve
one of those communities, the success depends on the relationship between both parties, and in
how other developers in the target community may perceive the project outcomes.

4.5 Openness of procedures

Although FLOSS does not mandate that other information, apart from the source code itself,
is made public, having a general “open” policy in other areas may have useful results. Public
accountability of what the project is doing and how it is doing may, for example, help to create the
trustworthiness needed to attract external users, and later contributors. Exposing information
about detected bugs, roadmaps, design decisions, etc. help to create the kind of atmosphere in
which FLOSS developers tend to find themselves more comfortable.

Recommendation:
Try to keep as much public information about the project as possible. This could include all

non-confidential information, including minutes and slides of project meetings, design documents,
research papers, and of course all development-related information. Make it publicly available
in a prominent area in the project website.

5 Distribution and dissemination

One of the main advantages of creating FLOSS components is that they can be redistributed
easily, which should help to disseminate the results of the project. It is therefore important
to make the most of this advantage, by taking measures to boost distribution of the produced
software and other results.

12



5.1 Software distribution policies

The project has to decide on the policy for the distribution of the FLOSS it releases. Usually,
not only source code should be redistributed: binary and packaged versions, ready to install and
run, are a good complement, which may lower meaningfully the barriers for adoption. In general,
packaging for the target platforms (eg., RPM and Debian packages in the case of Linux-based
platforms, or Windows-autoinstallable packages for Windows platforms) is the preferred form of
distribution, since users have less trouble with those formats.

The FLOSS components released by the project can be distributed separately. But whole
systems, ready to use, can be produced as well, and offered for download and redistribution.
Prominent cases of whole systems include custom Linux-based distributions, ready to install in
a USB memory stick configured to bootstrap a computer, and virtualized images, ready to be
deployed in a cloud.

The project should also decide whether each partner will redistribute their components, or
if all of them will be available in a single location. As a general rule, the latter is preferable
and easier to maintain, since it contributes to reinforcing the image of the project as a whole.
However, both distribution policies are possible simultaneously: FLOSS components can be
distributed from different locations.

In many cases, the software can be distributed as a part of a collection put together by a
third party. One of the most relevant cases is Linux-based distributions: if the software enters
for example Debian or Ubuntu, its visibility is hugely augmented. However, this only happens
when it has a clear interest to end users, and attracts the attention of the developers of the
distribution. The most sensible action to help this happen is to provide proper packaging for
those distributions, since that simplifies the work of distribution developers, if they decide the
component is worth considering.

Recommendation:
The project should decide, and express it in the Description of Work, its policy and plan

for FLOSS distribution. Whenever possible, a central repository with both source code and
binary packages ready to install should be established, maybe using the services of a forge. The
project should devote the necessary effort to maintain the installable packages as much updated
as possible, and should establish clear channels for receiving feedback from users installing them.

5.2 Contributions to external projects

It is common that the project uses external FLOSS components. In this case, some patches
fixing bugs or adding improved functionality could be produced as a part of the activities of the
project. In this case, it is usually in the benefit of the project to contribute back with those
patches to the FLOSS projects producing the components. That way, there are chances that the
patches are integrated in new releases, saving the project the burden of re-patching them.

Recommendation:
Establish a clear policy, detailed in the Description of Work, to contribute back fixes and

improvements to FLOSS components used by the project.

5.3 Dissemination strategy

It is usually recognized in R&D projects the importance of designing and implementing a good
dissemination strategy. In the case of FLOSS components, this is of course also the case. More-
over, FLOSS has its own places, channels and procedures for dissemination, which can be ex-
ploited in addition to the more traditional ones.

13



5.4 Conferences and meetings suitable for dissemination

The wide FLOSS community has several meeting points, quite specific for FLOSS-related issues.
Some of the most relevant of those meetings in the European Union are:

• FOSDEM. Targeted mainly at worldwide FLOSS developers. Organized in Brussels (Bel-
gium). A very good place to show applications to FLOSS developers.

• LinuxTag. Targeted also to developers, but mainly to companies. Organized in Germany
(last years it was in Berlin). A good place to contact business, includes the largest expo
about FLOSS in Europe.

• Open World Forum. Targeted mainly to business, but with a wide focus. Organized in
Paris. Good place to show ideas to a large community, and to organize workshops for
relationship with other projects.

There are also plenty of national or regional conferences (some of them partially running
in English, and accepting international presentations), and project-specific meetings, such as
GUADEC (for GNOME), Mozilla Drumbeat (organized by the Mozilla Foundation), KDE
Academy (for KDE), etc. All of them could be suitable places for showing the results of a
project if they could be of interest to those communities.

Recommendation:
If the FLOSS community has been identified as a dissemination target by the project, an

specific plan considering some of these conferences and meetings should be designed. It could be
a part of the Description of Work, or of the deliverable detailing the dissemination strategy and
plans.

5.5 Other communication channels

There are many other, usually web-based, channels suitable for communication and dissemination
of the results of the project to parties interested in FLOSS. Some of them:

• The forges themselves (and specially the largest ones) may be a dissemination channel, since
they are used for searches for specific software. In this case, the correct categorization of
the project is of paramount importance. In some cases, a fake project (including only
categorization information and release versions for download) can be open, even if the
actual development takes place elsewhere.

• Freshmeat. This is a website specifically designed for announcing FLOSS products, and
their new versions.

• Ohloh. This site is a website which provides analysis of FLOSS projects and products.
New projects can be registered.

• Identi.ca, Twitter groups and tags.

Recommendation:
Include some (or all) of these channels in the dissemination policy.

14



5.6 Demonstration site and materials

When approaching FLOSS developers, and in general, almost anyone in the FLOSS community,
the principle of “show me the code” (or “show me the binary”, for that matter) has to be taken
into account. In other words, people is used to quickly test the program, if they think it could be
interesting for them. Therefore, any dissemination action has to be complemented with a version
of the produced software suitable for use and inspection: otherwise, the project will probably be
tagged as “vaporware”.

In addition to the binaries, when possible demonstrations sites and materials showing how the
components behave (such as installation and user manuals, screencasts or other kind of videos)
should also be produced, and included prominently in the project website.

Recommendation:
The project should design the development process in such as way that a preliminary version

of the FLOSS components is available early in the project life, and certainly at about the same
time when the dissemination effort starts. In addition to the released FLOSS components, other
materials helpful for their users should be produced.

6 Community, sustainability

An R&D project producing FLOSS components usually has as a goal the raising of a community
around them, that could help to (or directly, ensure) the sustainability of the components after
the end of the funded period.

6.1 Growing a community

Many R&D projects have as a goal the rising of a community of users and contributors that help
in the sustainability of the project once the funded period is over. However, the rise of such a
community cannot be taken for granted. On the contrary, specific plans and resources have to
be designed and devoted to this end.

Recommendation:
If the project has the intention of growing a community around the FLOSS components it

will produce, include in the Description of Work an specific plan and the needed resources to
accomplish that task.

6.2 Passing the token

When the funded period for the R&D project ends, different partners in the consortium may
have different strategies with respect to the produced FLOSS components. Some of them may
move on to new research challenges, some others may still use the components, but will have not
enough resources or interest to collaborate in their maintenance, maybe some others will still
maintain them.

Therefore it is important to define who will have, at the end of the funded period, resources
and interest to carry on the maintenance and further development of the components. If no
partner will play that role, the project should design an strategy to pass the token to other
interested parties, if any. This is something that should be done during funded period, so that
some resources can be devoted to the transition.

Recommendation:
The Description of Work, as a part of the sustainability plan, should specify which partners

will be responsible for the maintenance of the FLOSS components after the end of the funded

15



period. If no partner can be specified, some transition strategy should be designed, identifying
the third parties that could be interested in getting that responsibility. In some cases, some
FLOSS-related foundation could be interested in the future maintenance of the project.

Recommendation:
In any case, the project should ensure that at least the FLOSS components and their ac-

companying materials (such as their documentation) will remain available well after the end of
the funding project. This can be done by uploading the software and materials to some forge or
website that ensures their long term availability.

7 Other outcomes of the project

7.1 Licenses for public documents and media

Public deliverables produced by the project could be free documents (as defined by the “Definition
of Free Cultural Works”). Probably they should, in any case, if they are needed or convenient
for understanding the released FLOSS products. Although the definitions of FLOSS do not
mandate this, the project may experience little harm because of it. On the contrary, having the
documents distributed under free licenses will ensure that they can evolve and be redistributed
with the FLOSS components that have relationship with them. In addition, this usually helps
to dissemination of the documents, since third parties can easily participate in the distribution
chain.

Recommendation:
Consider including in the Description of Work a default policy for releasing all public deliver-

ables as free documents. In this case, make the consortium familiar with the definition of “Free
Cultural Works”, and specify also a license for distribution, as soon as possible in the life of the
project. The Creative Commons Attribution-ShareAlike license is one of the most commonly
used by projects in this situation.

7.2 Formats for documents and media

When interacting with the FLOSS community at large, usually some care has to be put on the
formats for the documents and media used. First of all, the project has to understand that many
people in that community will refuse to use non-FLOSS tools, or will not have the chance of
doing so. Therefore, avoid as much as possible formats that cannot be viewed with FLOSS tools.
If the document or media is intended for edition or change, ensure that can be done with FLOSS
tools too.

If the project wants to project an image of being FLOSS-friendly, it is also important that uses
formats usual in FLOSS communities. For instance, ODF is usually preferred to other formats
for editable documents, although PDF is acceptable for viewable-only documents. Video and
audio formats based on Ogg are preferred to those based on MPEG or Flash.

If the partnership includes FLOSS organizations, or other partners heavily involved in the
FLOSS world, it is likely that they will propose these formats to be used also by the project for
its internal use. To avoid problems once the project is running, these aspects should be clarified
as soon as possible, even when in the proposal stage.

Recommendation:
Consider including a policy about formats for documents and media, both for public and

internal use, in the Description of Work of the project. Try to make this policy as much friendly
as possible to potential users and contributors, and to the FLOSS community at large.

16



7.3 Software used in dissemination and development activities

If the project wants to show some commitment to the FLOSS community at large, it should be
as careful as possible with the software used, at least in its “visible” activities. Among them,
those most scrutinized could be dissemination and development. Tools accessible by third parties
in those domains should be FLOSS themselves, to a reasonable extent.

Recommendation:
If the projects wants to be “FLOSS-friendly”, it should ensure that it will use FLOSS com-

ponents for its internal and external activities, as much as possible. A strategy and some criteria
for determining which components will be used, and which exceptions will be allowed could be
a part of the Description of Work.

8 Other issues

Transparency and accountability will in general be appreciated by the FLOSS community at
large, and will easy the collaboration with third parties. That will also help others to understand
the goals of the project by potential contributors and users.

Therefore, it is important that public deliverables are really public, and easily accessible from
the website. For the same reasons, a version of the Description of Work, maybe stripped out
from its confidential information, should be published and easily accessible.

Recommendation:
Specify in the Description of Work whether there will be public version of it, and how will all

the public versions of the deliverables be made public. Ensure, as much as possible, that they
remain available after the end of the project.

9 Further reading

[To be completed]

17


	Introduction
	What is FLOSS?
	Issues to deal with from the start
	Determining FLOSS outcomes
	Policies for licensing and transfer of copyright
	Previous assets and licensing status
	External dependencies
	Development model
	Relationship with external parties (users, contributors)
	Envisioned sustainability model

	Development issues
	Infrastructure for supporting development
	Development tools and practices
	Release early, release often
	Integration with established communities
	Openness of procedures

	Distribution and dissemination
	Software distribution policies
	Contributions to external projects
	Dissemination strategy
	Conferences and meetings suitable for dissemination
	Other communication channels
	Demonstration site and materials

	Community, sustainability
	Growing a community
	Passing the token

	Other outcomes of the project
	Licenses for public documents and media
	Formats for documents and media
	Software used in dissemination and development activities

	Other issues
	Further reading

